

Frontiers in Food, Drug and Natural Sciences (2025), Vol 3: 22-30

An international peer-reviewed online journal

Available online: fd-science.com

Review Article

Enhancement of gel strength and quality in surimi-based products: The influence of natural additives and processing techniques

Shadab Hushmandi

Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran

ARTICLE INFO

Received: 28 April 2025 Received in revised: 19 May 2025 Accepted: 30 May 2025 Published online: 2 June 2025

ABSTRACT

Surimi, a highly refined fish protein concentrate, occupies a pivotal position within the seafood industry, serving as a versatile foundation for various products. The origins of surimi production can be traced back over nine centuries; however, it underwent significant modernization in the 1960s, evolving into a global enterprise, particularly prominent in Japan, China, and South Korea. The production of surimi involves a comprehensive series of processes, including deboning, washing, refining, and stabilization through the application of cryoprotectants, followed by freezing and packaging. The gelation mechanisms pertinent to surimi, encompassing thermal, high-pressure, transglutaminase-mediated, and pHdependent gelation, are crucial for achieving the desired texture and stability. The integration of these processes with various additives serves to enhance the gel strength, elasticity, and water retention of surimi products. The additives utilized may be of animal origin, such as plasma proteins, egg whites, and fish gelatin, or plant-based, including legume proteins, starches, and rice flour. Furthermore, cryoprotectants, such as polyols and gums, along with functional additives like ascorbic acid and unsaturated fatty acids, contribute to the preservation, stability, and nutritional profile of surimi. These techniques and additives collectively facilitate the production of highquality surimi-based products characterized by improved texture, flavor, and shelf life, thereby increasing their popularity in the global marketplace for a diverse range of seafood offerings.

Keywords: Additives; Elasticity; Fish; Gel strength; Surimi.

^{*} Direct inquiries to the author: hushmandi.sh@gmail.com

1. Introduction

Fish flesh is known for its distinctive qualities, including a high protein content, a well-balanced amino acid profile, and a rich supply of polyunsaturated and essential fatty acids, particularly omega-3 fatty acids. Additionally, it is low in harmful cholesterol and saturated fats (Wohlfarth & Schroeder, 1979). As consumer awareness of health issues continues to increase, the demand for fish and fishery products is experiencing steady growth. Nonetheless, large-scale processing industries, including canning and filleting, remain underdeveloped within our nation.

To optimize capacity utilization and create a diverse array of value-added products, the processing of underutilized fish species into surimi-based products presents immediate advantages to the current fish processing sector. Consequently, it is imperative to develop innovative processing methods for these underutilized protein resources to render them both functional and appealing for human consumption (Osman & Zidan, 2014). Enhancing the gel strength and overall quality of surimi-based products can be effectively achieved through the incorporation of natural additives and the optimization of processing methods. Specifically, plant-based natural ingredients contribute not only to the texture and flavor but also to the nutritional value of surimi products, thereby increasing their appeal to consumers (Abdullah et al., 2019). Furthermore, a comprehensive understanding of the gelation process, which entails the formation of a protein network, is critical for reinforcing the gel and enhancing product quality. Protein-protein interactions, especially those occurring between actin and myosin, play a critical role in influencing gel quality, with stronger interactions correlating with improved product characteristics (Adhawati et al., 2017).

The utilization of transglutaminase promotes protein cross-linking, which in turn enhances both gel strength and stability (Adhawati *et al.*, 2017).

Additionally, the optimization of essential processing steps, including grinding, mixing, and heating, is vital for improving the texture and overall quality of surimi-based products (Agustini *et al.*, 2009). The integration of these strategies substantially enhances the commercial

attractiveness and market viability of surimi products.

The surimi and surimi seafood industry, which originated in Japan during the 1960s, has evolved into a global market by the late 20th century. Japan, China, and South Korea the global dominate surimi industry, collectively accounting for over 70% of the world's surimi production (906,000 tonnes) and nearly 2.5 million tonnes of surimi-based seafood (Leadbitter et al., 2020). The term "surimi," which translates to "ground fish meat" in Japanese, is extensively utilized as a source of frozen fish proteins for a variety of products. In 2015, commemorated the 900th anniversary of kamaboko and initiated the Kamaboko Road 1000 project (Guenneugues & Ianelli, 2013). Historically, surimi has been employed in the production of fish balls in Fujian Province, China, and is also incorporated into traditional dishes across numerous Asian countries, Thailand, including Vietnam, Korea. Indonesia, and Myanmar (Leadbitter et al., 2020). The production of surimi involves the isolation of fish myofibrillar proteins through a series of processing steps, which include harvesting, sorting, heading, gutting, deboning, washing, and refining. The proteins are subsequently stabilized cryoprotectants prior to being shaped into blocks, frozen, and packaged. Each stage of the process significantly influences the final quality and yield of surimi. Effective management of temperature and throughout processing and storage is essential for preserving surimi quality over extended periods. Furthermore, the thorough elimination of undesirable substances such as fats, sarcoplasmic proteins, and lipids is critical for achieving high-quality surimi. Typically, fish protein derived from surimi constitutes 20 to 30% of the final product composition (Leadbitter et al., 2020).

Fish-paste products, commonly known as fish cakes, are made from frozen surimi and are widely consumed in Korea and Japan (Hwang *et al.*, 2013). In the Korean Food Standards Codex, fish cakes are classified as processed marine products containing salt-soluble proteins derived from fish meat. In 2010, South Korea produced 141,544 tons of fish cakes, valued at around 340 billion won

Table 1. Lists of additives used in fish and fishery products.

	Hoto of additives abed in non-differences.									
Additive function	Categories	Examples	Application	Reference						
To maintain palatability and wholesomeness (preservatives)	Antimicrobial agents	Benzoates, sorbates, NaCl NO ₃ , NO ₂ , organic acids, essential oils	Surimi/minced fish products dried, salted or cured fish, fish fillets	(Syamdidi, 2012)						
To aid in the processing	Anticaking agents	Ca ₃ (PO ₄) ₂ , Na ₂ SiO ₃ , Ca ₂ SiO ₄ , MgCO ₃ , Na ₄ P2O ₇	Paste/minced products	(Taylor & Nordlee, 1993)						
To aid in the processing	Cryoprotectants	PP	Paste products, fillets, frozen crustaceans	(Vijayan et al., 2021)						
Green pepper	Inhibited the growth of wild type strain of Pseudomonas aeruginosa and attenuated its virulence properties	Essential oils	Fish-based products	(Myszka et al., 2019)						
Punica granatum peels and Hibiscus sabdariffa calyxes	Colorant, preservative, and antimicrobial action	Essential oils	Burger and surimi	(Tayel <i>et al.</i> , 2018)						

(Ha et al., 2013). Fish cakes can be prepared by frying, boiling, with over 95% of them are fried in South Korea (Sotolu, 2011). Fried fish cakes (FFC) are known to include functional ingredients like fiber (Yook et al., 2000), mushrooms, and anchovies (Bae & Lee, 2007).

2. Role of chemical additives and natural alternative solutions by definition

Additives are substances used to enhance or preserve the safety, freshness, flavor, texture, or appearance of food. These additives are commonly introduced at various stages of production, processing, storage, packaging, and transportation of fish and fishery products. Additives can be classified into two categories: synthetic (chemical) and natural (Vijayan et al., 2021). Among chemical additives, sodium chloride (NaCl) is the most widely used. Similarly, sugar, which is readily available, is commonly added to seafood products. Sugar can significantly lower the pH and reduce volatile bases such as total volatile base nitrogen (TVB-N) (Fan et al., 2014). It also acts as a cryoprotectant in frozen surimi and other products (Sultanbawa & Li-Chan, 1998; Sych et al., 1991), helps preserve myofibrillar protein (Ohshima et al., 1993),

reduces biogenic amine accumulation in sausages and dry-cured grass carp (Bover-Cid 2001). and prevents denaturation in minced fish meat. The combination of sugar and salt can also slow spoilage and enhance various properties (Fan et al., 2014). For example, the traditional Nordic product "gravad" is made using this combination of sugar and salt (Lyhs et al., 2001). Additionally, sodium citrate can improve cooking yield and texture by preventing excessive pH drops (Agrafioti & Katsanidis, 2012). Sodium or potassium lactate is another effective additive for seafood products. It has been shown to extend shelf life in minced fish products (Birkeland & Rotabakk, 2014), exhibit antibacterial effects in sliced and cold-smoked salmon (Sallam, 2007), and improve preservation in catfish fillets (Williams, 1995).

3. Cryoprotectants

Although surimi possesses a historical lineage exceeding 900 years, contemporary surimi production commenced in the 1960s, when Japanese researchers Kyosuke Nishiya and Fumio Takeda at the Hokkaido Fishery Research Center identified the advantageous function of sugar as a cryoprotectant. This

pivotal discovery demonstrated that sugar could mitigate protein denaturation during the processes of freezing and frozen storage, establishing the thereby foundational principles for the global surimi industry by facilitating the transition from fresh to frozen surimi. Initially, an 8% concentration of sugar was employed in surimi production derived from pollock; however, this concentration was subsequently reduced to 4% and substituted with sorbitol, as the initial 8% was deemed excessively sweet. Additionally, a combination of sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP) in an equal ratio of 50/50, at a concentration of 0.3%, was also incorporated into the production process (Leadbitter et al., 2020).

4. Natural additives

4.1. Plant-derived products

utilization of plant-based natural compounds, including essential oils, plant extracts, hydrocolloids, and phenolic compounds, has garnered considerable attention in the preservation of seafood. These compounds exhibit significant antimicrobial and antioxidant properties, rendering them invaluable within the food industry. Derived from various plant parts-such as petals, leaves, fruits, stems, and roots-plant extracts and essential oils confer antioxidant effects attributed to volatile organic compounds, phenolic terpenoids, and components. Notably, essential oils demonstrate greater efficacy against gram-positive bacteria compared to gram-negative bacteria, as the lipopolysaccharide cell wall of the latter obstructs the penetration of these oils into the membrane (Bajpai et al., 2008). Although essential oils and plant extracts are commonly employed to prolong the shelf life and uphold the quality of fish and seafood, their pronounced odors, high volatility, intricate chemical compositions, and limited bioavailability pose significant challenges. Additionally, variability in plant genetics and extraction methodologies further influences their practical applications (Stevanović et al., 2018). The incorporation of seaweed and algal extracts is on the rise as natural sources of antioxidants and nutritional benefits. Among the hydrocolloids frequently utilized, agar-agar primarily serves as a thickening agent in fish

paste products, while carrageenan enhances the gelling properties of fish mince (Borderías et al., 1996), and improves the organoleptic qualities of mussels and squids (Guldas & Hecer, 2013). Sodium alginate is routinely employed as a stabilizer and thickener in coatings. Hydrocolloids such as konjac further augment the gelling capabilities of surimiderived products (Park. 1996) substances, including starch (Gómez-Guillén et al., 1997) Various gums like guar, xanthan, and guar contribute to the elasticity and gelling properties of fish-based products. Furthermore, iota carrageenan and xanthan (Montero et al., 2000). They are noted for their cryoprotective effects (Da Ponte et al., 1987). Plant-derived products, including soybean protein, wheat gluten, and starch, are also utilized as additives in fish paste formulations (Bashir et al., 2017).

4.2. Animal-derived products

Animal-derived products such as chitosan, gelatin, and whey proteins are commonly used as food additives. Chitosan is a natural polymer extracted from chitin, which is found in the exoskeletons of shellfish and fungal cell walls. Gelatin is a protein sourced from the collagen of animal tissues, while whey protein is one of the two primary proteins in milk, alongside casein. These compounds are often used to coat food products, providing antioxidant and antimicrobial properties that help extend their shelf life. Adding these compounds directly to packaging materials further enhances their preservative effects (Ahmed et al., 2017). In fish paste products, additives like plasma hydrolysate, plasma proteins, ovomucoid, egg albumin, and egg white are used to improve product strength (Bashir et al., 2017) Studies have also shown that egg whites and hydrolyzed beef plasma proteins contribute to the binding in surimi gels (Park, 1994), while bovine plasma powder and egg white powder enhance the gel properties in arrow-tooth surimi (Wasson et al., 1993).

4.3. Microbial-derived products

Bacteriocin, an efficacious biopreservative predominantly extracted from Lactobacillus, demonstrates substantial antimicrobial properties. Its mechanism of action involves

Table 2.Natural food additives used to improve the gel properties of fish-paste products.

Common name	Categories	Species	Cooking method	Used as	Metrics	Optimum amount or treatment condition	Reference
Fish gelatin	Seafood additives	Commercial fish gelatin (gelatin rousselot)	Heated in a water bath	Powder	Color, mechanical, functional, sensory attributes	10 g. kg ⁻¹	(Hernández -Briones et al., 2009)
Squid ink tyrosinase (SIT) + tannic acid (TA)	Seafood additives	Todarodes pacificus	Heated in a water bath	Mixture	Tyrosinase activity, in vitro oxidation assay, color, textural and sensory attributes	SIT: 500U. g-1 protein + TA: 1%	(Vate & Benjakul, 2016)
Soy protein isolate	Plant source additives	Glycine max	Heated in a water bath	Commercial soy protein isolate	Total nitrogen and moisture content, gel strength, color	10%	(Luo et al., 2004)
Potato starch	Plant source additives	Solanumtu berosum	Heated in the Krehalone casing film	Powder	Proximate analysis, protein composition, color, folding text, textural and sensory attributes	8%	(Yoo, 2011)
Amorphophallus konjac flour (AKF) NaCl + high	Cryoprotectan ts and humectants	Amorphoph allus konjac	Heated in a water bath	Flour	Water retention ability, color, textural and sensory attributes	10%	(Choi & Kim, 2012)
Eicosapentaenoic acid, docosahexaenoic acid	Cryoprotectan ts and humectants	-	Heated in a water bath	Oil	Proximate analysis, color, water-holding capacity, physical attributes	5%-30%	(Fukushima et al., 2007)
Whey protein concentrate	Other Functional Additives	Bos taurus	Heated in a water bath	Whey protein concentrate	Water-holding capacity, color, autolytic activity	3%	(Rawdkuen & Benjakul, 2008)

the disruption of bacterial cell wall synthesis via pore formation, which results in the leakage of intracellular contents and subsequently inhibits bacterial proliferation (Sharma *et al.*, 2018). In addition to its antimicrobial properties, bacteriocins are characterized by their non-toxic nature and effectiveness across a diverse spectrum of pH

levels and temperatures, thus categorizing them as generally recognized as safe (GRAS) additives (Woraprayote *et al.*, 2016). Representative bacteriocins produced by *Lactobacillus* include nisin, lacticin, and pediocin, many of which have proven particularly efficacious against endosporeforming bacteria. When utilized in conjunction

with other preservation techniques, bacteriocins frequently exhibit enhanced effectiveness. For instance, the combination of microencapsulated Ziziphora clinopodioides essential oil and nisin has been demonstrated to significantly preserve the sensory quality of fish burgers (Shahinfar et al., Nonetheless, the high production costs associated with bacteriocins hinder their widespread application. Research indicates that a synergistic combination of plant, animal, and microbial-derived products can yield superior preservative effects compared to their singular application (Wu et al., 2019).

5. Improvement of the gel Properties of fish-paste products

The mechanisms underlying surimi gelation are fundamental for attaining the desired texture and stability in a range of products. Prominent seafood methods encompass thermal gelation, wherein heat induces protein denaturation formation of a gel-like structure, thereby enhancing the product's texture and stability. Cold-set gelation entails the application of low temperatures alongside cross-linking agents such as calcium ions to yield diverse textures and flavors, particularly in products like kamaboko and crab sticks.

High-pressure gelation employs significant pressure to achieve analogous outcomes, frequently in conjunction with other techniques to amplify the effect. Furthermore, transglutaminase-mediated gelation utilizes the enzyme transglutaminase to facilitate the cross-linking of proteins, permitting a variety of textures and flavors in both surimi seafood and meat analogues.

Lastly, pH-dependent gelation alters the pH of the surimi mixture to induce gel formation, thereby further enhancing the quality of the final product. These mechanisms collectively operate to generate surimi products characterized by desirable attributes.

5.1. Animal-based additives

Plasma proteins, sourced from beef, pork, and chicken, augment gel strength and elasticity; however, elevated concentrations may result in off-flavors or adverse effects. Egg whites and whey proteins also contribute to improved gel formation, with egg whites specifically

enhancing breaking strength and gel deformation. Fish gelatin exerts a minimal influence on texture, whereas fish bones can significantly enhance water retention and gel strength.

5.2. Seafood-based additives

Shrimp head protein hydrolysate aids in preserving gel structure by mitigating freeze-induced protein denaturation. Fish plasma proteins, such as those derived from salmon, inhibit autolysis, while squid ink-based additives may enhance gel firmness.

5.3. Plant-based additives

Legume proteins, inclusive of soy, black cowpea, and Bambara groundnut proteins, act as protease inhibitors and reinforce gels, although they may marginally diminish whiteness. Starches, particularly those extracted from potatoes and sweet potatoes, are frequently employed to bolster elasticity and water retention in surimi, with their amylose content influencing gel strength. Rice flour serves as an alternative to wheat flour, improving both gel texture and the sensory properties of surimi products.

5.4. Cryoprotectants and humectants

Polyols, sugars, and polyunsaturated fatty acids are utilized to maintain the quality of surimi during cold storage and freezing, ensuring stability and structural integrity. Additional compounds such as polyuronides, saccharides, and salts also confer benefits. Konjac and xanthan gums enhance the viscoelastic properties of gels, contributing to increased firmness and stability. Potassium, serving as a substitute for sodium, aids in reducing sodium levels in fish products; may influence however, it consumer preference due to variations in taste.

5.5. Other Functional Additives

Ascorbic acid fortifies gels through the oxidation of protein sulfhydryl groups. fatty acids. Unsaturated including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), enhance gel stability and enrich the nutritional profile of surimi products. Plant extracts, such as tannins and coconut husk, are advantageous for sustaining surimi quality, preserving gel

strength, and improving sensory properties over time. Each of these additives influences gel characteristics, encompassing breaking force, deformation, water retention, and occasionally color and flavor, rendering them appropriate for various applications contingent upon the intended attributes of the final product (Bashir *et al.*, 2017).

6. Conclusions and perspectives

Surimi is derived from myofibrils, which structural proteins constituting approximately 65-80% of the muscle mass in fish. When combined with NaCl, fish protein viscous exhibits both elasticproperties. During thermal processing, this protein paste undergoes a transformation into a gel, with only a minor proportion retaining its viscous characteristics. The influence of temperature on gelation is contingent upon various factors, including the species of fish, processing methodologies, and the historical context of the surimi. According to the Food and Agriculture Organization (FAO), surimi production reached one million tons in 2010, with the United States identified as the largest producer, contributing 300,000 tons. In contrast, Japan emerged as the leading global consumer, utilizing 500,000 tons of surimi. As the demographic of qualityconscious consumers expands, the demand for natural additives in surimi products is anticipated to rise, juxtaposed with the diminishing use of synthetic ingredients.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

7. References

- Abdullah, A., Sativa, H. A., Nurhayati, T., & Nurilmala, M. (2019). Utilization of DNA barcodes for traceability of labels of various commercial surimi-based processed fish products. *Journal Pengolahan Hasil Perikanan Indonesia*, 22(3), 508-519.
- Adhawati, S. S., Baso, A., Malawa, A., & Arief, A. A. (2017). Comparative study of economic value post cantrang moratorium on the waters of the Gulf of Bone and Makassar Straits, South Sulawesi Province.

- International Journal of Oceans and Oceanography, 11(2), 201-215.
- Adhawati, S. S., Baso, A., Malawa, A., & Arief, A. A. (2017). Social study of cantrang (danish trawl) fisheries post moratorium at Makassar Straits and Bone Gulf, South Sulawesi Province, Indonesia. *Aquaculture, Aquarium, Conservation & Legislation,* 10(5), 1140-1149.
- Agrafioti, P. T., & Katsanidis, E. (2012). Effects of additives on the selected quality attributes and cooking yield of squid: Modelling and optimization. *International Journal of Food Properties*, 15(3), 579-589.
- Agustini, T. W., Darmanto, Y. S., & Susanto, E. (2009). Physicochemical properties of some dried fish products in Indonesia. *Journal of Coastal Development*, 12(2), 73-80.
- Ahmed, J., Mulla, M., & Arfat, Y. A. (2017). Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. *Food Hydrocolloids*, *71*, 141-148.
- Bae, M. S., & Lee, S. C. (2007). Quality characteristics of fried fish paste containing anchovy powder. *Journal of the Korean Society of Food Science and Nutrition*, 36(9), 1188-1192.
- Bajpai, V. K., Rahman, A., & Kang, S. C. (2008). Chemical composition and inhibitory parameters of essential oil and extracts of *Nandina domestica* Thunb. to control food-borne pathogenic and spoilage bacteria. *International Journal of Food Microbiology*, 125(2), 117-122.
- Bashir, K. M. I., Kim, J. S., An, J. H., Sohn, J. H., & Choi, J.-S. (2017). Natural food additives and preservatives for fish-paste products: A review of the past, present, and future states of research. *Journal of Food Quality*, 2017(1), 9675469.
- Birkeland, S., & Rotabakk, B. T. (2014). Effects of additives and packaging method on quality and microbiological characteristics in mild thermal processed fish mince. *Journal of Aquatic Food Product Technology*, 23(4), 368-384.
- Borderías, J., Montero, P., & Marti de Castro, M. A. (1996). Gelificación de serrín de merluza (Merluccius australis)/Gelling of hake (Merluccius australis) sawdust. Food Science and Technology International, 2(5), 293-299.

- Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M. C. (2001). Changes in biogenic amine and polyamine contents in slightly fermented sausages manufactured with and without sugar. *Meat Science*, *57*(2), 215-221.
- Choi, S. H., & Kim, S. M. (2012). Quality properties of giant squid (Dosidicus gigas) surimi-based product manufactured with *Amorphophallus konjac* flour. *Korean Journal of Food Science and Technology*, 44(4), 422-427.
- Da Ponte, D. J. B., Roozen, J. P., & Pilnik, W. (1987). Effects of iota carrageenan, carboxymethyl cellulose and xanthan gum on the stability of formulated minced fish products. *International Journal of Food Science & Technology*, 22(2), 123-133.
- Fan, H., Luo, Y., Yin, X., Bao, Y., & Feng, L. (2014). Biogenic amine and quality changes in lightly salt-and sugar-salted black carp (*Mylopharyngodon piceus*) fillets stored at 4°C. *Food Chemistry*, 159, 20-28.
- Fukushima, H., Okazaki, E., Noda, S., & Fukuda, Y. (2007). Changes in physical properties, water holding capacity and color of heat-induced surimi gel prepared by emulsification with fish oil. *Nippon Shokuhin Kagaku Kogaku Kaishi*, *54*(1), 39-44.
- Gómez-Guillén, C., Borderías, A. J., & Montera, P. (1997). Thermal gelation properties of two different composition sardine (*Sardina pilchardus*) muscles with addition of non-muscle proteins and hydrocolloids. *Food Chemistry*, *58*(1-2), 81-87.
- Guenneugues, P., & Ianelli, J. (2013). Surimi resources and market. In J. W. Park (Ed.), *Surimi and surimi seafood* (pp. 25-53). USA: CRC Press.
- Guldas, M., & Hecer, C. (2013). Influences of the selected additives on the weight loss and organoleptic properties of marinated mussels and squids. *Acta Veterinaria Brno*, 81(3), 263-267.
- Ha, M. S., Ha, S. D., Choi, S. H., & Bae, D. H. (2013). Assessment of Korean consumer exposure to sodium saccharin, aspartame and stevioside. *Food Additives & Contaminants: Part A*, 30(7), 1238-1247.
- Hernández-Briones, A., Velázquez, G., Vázquez, M., & Ramírez, J. A. (2009). Effects of adding fish gelatin on Alaska pollock surimi gels. *Food Hydrocolloids*,

- 23(8), 2446-2449.
- Hwang, H. J., Choi, S. Y., & Lee, S. C. (2013). Preparation and quality analysis of sodium-reduced fried fish cakes. *Preventive Nutrition and Food Science*, 18(3), 222.
- Leadbitter, D., Guenneugues, P., & Park, J. (2020). The production of surimi and surimi seafood from tropical fish—a landscape view of the industry (1st ed.). Vancouver: Report to the Certification and Rating Collaboration; Certification and Ratings Collaboration.
- Luo, Y., Kuwahara, R., Kaneniwa, M., Murata, Y., & Yokoyama, M. (2004). Effect of soy protein isolate on gel properties of Alaska pollock and common carp surimi at different setting conditions. *Journal of the Science of Food and Agriculture*, 84(7), 663-671.
- Lyhs, U., Lahtinen, J., Fredriksson-Ahomaa, M., Hyytiä-Trees, E., Elfing, K., & Korkeala, H. (2001). Microbiological quality and shelf-life of vacuum-packaged 'gravad' rainbow trout stored at 3 and 8°C. International Journal of Food Microbiology, 70(3), 221-230.
- Montero, P., Hurtado, J. L., & Pérez-Mateos, M. (2000). Microstructural behaviour and gelling characteristics of myosystem protein gels interacting with hydrocolloids. *Food Hydrocolloids*, 14(5), 455-461.
- Myszka, K., Olejnik, A., Majcher, M., Sobieszczańska, N., Grygier, A., Powierska-Czarny, J., & Rudzińska, M. (2019). Green pepper essential oil as a biopreservative agent for fish-based products: Antimicrobial and antivirulence activities against *Pseudomonas aeruginosa* KM01. *LWT*, 108, 6-13.
- Ohshima, T., Suzuki, T., & Koizumi, C. (1993). New developments in surimi technology. *Trends in Food Science & Technology*, 4(6), 157-163.
- Osman, M. F., & Zidan, N. S. (2014). Quality assessment of formulated fish silver carp burgers during frozen storage. *Journal of Food and Dairy Sciences*, *5*(6), 403-419.
- Park, J. W. (1994). Functional protein additives in surimi gels. *Journal of Food Science*, 59(3), 525-527.
- Park, J. W. (1996). Temperature-tolerant fish protein gels using konjac flour. *Journal of Muscle Foods*, 7(2), 165-174.

- Rawdkuen, S., & Benjakul, S. (2008). Whey protein concentrate: Autolysis inhibition and effects on the gel properties of surimi prepared from tropical fish. *Food Chemistry*, 106(3), 1077-1084.
- Sallam, K. I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. *Food Control*, *18*(5), 566-575.
- Shahinfar, R., Khanzadi, S., Hashami, M., Azizzadeh, M., & Bostan, A. (2017). The effect of *Ziziphora clinopodioides* essential oil and nisin on chemical and microbial characteristics of fish burger during refrigerated storage. *Iranian Journal of Chemistry and Chemical Engineering* (*IJCCE*), 36(5), 65-75.
- Sharma, G., Dang, S., Gupta, S., & Gabrani, R. (2018). Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from *Bacillus subtilis* GAS101. *Medical Principles and Practice*, 27(2), 186-192.
- Sotolu, A. O. (2011). Sustainable fisheries management through efficient fisheries resources data statistics. *Journal of Fisheries and Aquatic Science*, 6(3), 202.
- Stevanović, Z. D., Bošnjak-Neumüller, J., Pajić-Lijaković, I., Raj, J., & Vasiljević, M. (2018). Essential oils as feed additives—Future perspectives. *Molecules*, 23(7), 1717.
- Sultanbawa, Y., & Li-Chan, E. C. Y. (1998). Cryoprotective effects of sugar and polyol blends in ling cod surimi during frozen storage. *Food Research International*, 31(2), 87-98.
- Syamdidi, M. (2012). The use of chemical additives for fisheries product preservation. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 7(2), 79-87.
- Sych, J., Lacroix, C., Adambounou, L. T., & Castaigne, F. (1991). The effect of low-or non-sweet additives on the stability of protein functional properties of frozen cod surimi. *International Journal of Food Science & Technology*, 26(2), 185-197.
- Tayel, A. A., Almabady, N. A., Sorour, N. M., & Diab, A. M. (2018). Application of natural plant extracts as colorants, preservatives, and anti-listerial agents in processed fish products. *Journal of Food Safety*, 38(2), e12435.
- Taylor, S. L., & Nordlee, J. A. (1993). Chemical

- additives in seafood products. *Clinical Reviews in Allergy, 11*, 261-291.
- Vate, N. K., & Benjakul, S. (2016). Effect of the mixtures of squid ink tyrosinase and tannic acid on properties of sardine surimi gel. *Journal of Food Science and Technology*, 53, 411-420.
- Vijayan, A., Sivaraman, G. K., Visnuvinayagam, S., & Mothadaka, M. P. (2021). Role of natural additives on quality and shelf life extension of fish and fishery products. *Natural Food Additives*, 77994.
- Wasson, D. H., Reppond, K. D., Babbitt, J. K., & French, J. S. (1993). Effects of additives of proteolytic and functional properties of arrowtooth flounder surimi. *Journal of Aquatic Food Product Technology*, 1(3-4), 147-165.
- Williams, S. K. (1995). Sodium lactate affects shelf life and consumer acceptance of fresh catfish fillets under simulated retail conditions. *Journal of Food Science*, 60, 636-639.
- Wohlfarth, G. W., & Schroeder, G. L. (1979). Use of manure in fish farming—a review. *Agricultural Wastes*, 1(4), 279-299.
- Woraprayote, W., Malila, Y., Sorapukdee, S., Swetwiwathana, A., Benjakul, S., & Visessanguan, W. (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. *Meat Science*, 120, 118-132.
- Wu, Y., Shi, Y. G., Zeng, L. Y., Pan, Y., Huang, X. Y., Bian, L. Q., Zhu, Y. J., Zhang, R. R., & Zhang, J. (2019). Evaluation of antibacterial and anti-biofilm properties of kojic acid against five food-related bacteria and related subcellular mechanisms of bacterial inactivation. *Food Science and Technology International*, 25(1), 3-15.
- Yoo, B. J. (2011). The effects of alkaline treatment and potato-starch content on the quality of fish meat paste products prepared from Pacific sandlance *Ammodytes personatus* Girard. *Fisheries and Aquatic Sciences*, 14(3), 161-167.
- Yook, H. S., Lee, J. W., Lee, H. J., Cha, B. S., Lee, S. Y., & Byun, M. W. (2000). Quality properties of fish paste prepared with refined dietary fiber from ascidian (Halocynthia roretzi) tunic. Journal Ournal-Korean Society of Food Science and Nutrition, 29(4), 642-646.